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T'le rnerribuane equf l ihrhm equations are satisfied by letting 

N = F, - 3  

N = F, - J  

I 
c 

xx YY x 

w = Y  

- 2 2 ,  F, -k 2, F, = 9  "'/ XY yy xx 
L(Ff = Z, F: 

YY 
In eqs. 5 *a 7, p , 3-, an< p denote the zs:nponeots os' the surface 

loas ?err unit projectec? a r e 2  L.1 the x, y plane. 3 * J and q are defined as 
P Y  2 

X Y  
fol loivs  

X 
0 

The limits of iGtegrationo s zod y 

rcjpcctively: but are otherwize arbitrary- 

m u s t  be independent of x and y, 
0 0 

.- The  ECrlvabifi';y of cq. I S  LS depending en the gatassian curva ture  of 

the 22iddle sariace aad on %fie t y p  of boundary ccrndirions is outside the 

e c ~ p e  of this paper. " 
at hand does have a tjoiucio~1 a d  the piinciple of stationary complementary 

energy will be =sed %o ob-izin such a solution when displacement boundary 

conditions are imposed 02 aii 0%- par: af the h s n i a ~ y  

It will be assumed in the following that the problem 
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Lzl order to express W in te rms of the projected stress resultants, 

PI!. may iirst Ee expressed 'in terrrze of the atresa  Fesultants N- defined 

wvit;~ regard  io ihe mn-ortkogonal c n ~ ~ i l i ~ i e ~ r  coaxhates  x and y. For 

thtc  ;,jurpersc the directiann an ehe surface corresponding to the sabscript 1 

are taken as zhc same. 

lirtcs (x) and fy! on the surfzce, Fig. I ,  N f  and N. zpe rclz'ced through t?.c 

l r e l l i i O I l S  

13 I j  

a 

Letting C &note the angle between :he coordinate 

ij Ij 

2 i N + N,, cos Q -t- ( 7 ~  3 N 1 cos a] I - _  - 
sin Q t 11 &t 12 21 

!.J' = NZ2 sin f3 22 
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IV takes the form- 

la ternis OP tfre pzc-jectel S ~ P ~ S E  rzsaltants, eqs. I to 4, and per unit 

zrea in the x, y plane the c3mp'lesnentaay strain eizsrgy takes the form 

-7  - v a riatianal F'orilzulozion 

A fu~ctional  having as Eider equations 2-nd natural btm?d&y cond'tions 

thc equilibrium equations I force - displacement x-etatior-s and bundary condi- 

t io sn  of thin elastic she116 is established in refereace 4. 

Pur. etiane of the iunctiorai tlre tisphcernents, stress resuItants, zr.f stress 

ceq:@1a5. 

first be s p e c X i z e d  for the inembraoe theory- hut it must also be ynadified 80 

thz t only vaPiations sf ,'oi.-ces arre considered. This latter modification leads 

to $2 e principle of stationa-ty eorriplementary energy. 

The augurne.*.t 
0 

Is order to be L ~ S O ~  in the present prshtlcm the fviictional :IluEt 

The functional takes thes the fcrrn 
F 

where the first integral exter;ds over the projected midd'la surface and the 

seb:ond integral eztecds over the poxiion D of the projected boilndary curve 

where displacenient boundary conditions are specified, 

F -makes stationary the functiorzal E with 2 restrictions that the varied function 

F -: 6 F satkfies the eqziiibrium equation, (Is) ,  and possibly a stress boundary 

The stress function 
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condition which rnay be specifies on i? portiun S of the boundary. Thus the 
r 

restriction en b F in the domain of iotegration takes the form of the subsidiary 

0 c alii i tion 

6L(F) = s ( Z ,  F, - 22 ,  F, t 2, F, ) = 0 
xx YY "Y XY YY = 

7 
which can be treated by introducing a Lagrange multiplier , h , furLction of 

x and y. The functional takes the? form 

E' = l ( W *  + XL(F -41 ) ]dx  dy +/Y/ds (25) 
0 

The variation dF ai F is aow asbi"ts7ar-y throughout the domain of integration 

and on the portion D of the boilndary, 

satisfies the stress boundary condition, if any, on S. 

The only restriction is that F + dF 

If the general solution of the differential equation lor the stress function 

is kaown, it wi l l  depend on arbitrary constants or functbns of integration that 

may be arbitrarily varied without violating condition (24). 

is no need to introduce the Lagrange multiplier arid tk'e apFlication of the 

direct methods of the calculus of variations yields the appropriate equations 

In that case there 

fo:= the determination of the arbitrary quantities in the expression of the 

sts-ese function. 

graph. 

analytically, approximate methods for expressing the st ress  €unction in 

te::ms of sufficiently mzny arbitrary quantities rnay be used. One such 

method eonsists in replacing the differential equation L(F) - q = 0 by a 

finite difference equation at each of n points in the interior of the membrane. 

This yields a system of n linear algebraic equations in n t rn unknowns of 

which n are the values of F at the n interior points and rn are  the values of F 

at  rn boundary points. 

values of F in the interioi. of the membrane depend. 

m a y  be computed by numerical integration is thus transformed into a function 

of rn variables with regard to which it is m a d e  stationary, 

0 An illustrative example is presented in a subsequent para- 

canrLot be determined If the general solution for the s t ress  function 
I 

These latter are arbitrary constants on which the 

The functional E which 

7. Courant and Hilbert, "Methods of Mathematical Fhysics", Val? 1, 
Interscience Publishers, Inc., N e w  York, 1 9 5 3 ,  p. 221. 



- 
-9- 

d 

Another possible method of expressing F in terms of arbitrary constants 

consists in determining ar- approximate continuous solution of the differential 

equation L)F) - q = 0 in terms of arbitrary boundary values of F. These may 

be specified through a continuous frrnction of position along the boundary 

depending on undetermined constants. 

use direct methods such as described above the problem of the membrane 

with displacement boundary conditions may be reduced to the solution of eq. 

15 and of the EuPer equation 

functional E', eq. 25.  

When it is not advantageous to 

with the natural boundary conditions of the 

These are derived in the next paragraph. 

-- Euler Equation and Na'curzl Boundary Conditions 

The first variation of E9 can be written in the form 

IE '  =jj[(Z.+Xt,,.)&, - 2 @ 4 ~ , 4 J b y  + ( t ly+MyJJL]  dxdy 

where, using eq. 23 and adopting the notation E e ' 2 E , for the 
xx YY' XY m partial derivatives of w*, 

htegration by parts must now be used so that only d F appears in the area 

integral a d  only 6F and cF,, appear on the boundary integral. 

Green's Theorem the following general relation ma)r be established 

TJsing a 
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wJhe~e  f 1 and f SPI 3 functions of x and y and € , f cod f 
XlS xx xy w iln 58 

ar.5 obtained through the same trsnsforrnation formufan a8 e q ~ .  9 to 11, 

Identifying f .. - 2f and f wi::h :he coeff ic ie~ts  sf dF, JF aaci YY YY' ' XY xx X y 
f el?, 

by equating to zero the c~eFEicie~t of dF in the a1-a integ:*al on the right 

, respectively, in eq- 26 the Euler  differential equ;!tion i s  obtained 
XX 

I of z q .  30. Obtain after sim-pliiication 

for= 2 equations for F and the Lagrange rnu*.tipllierh. E , and E: x>: xy 
are expressed in terms of T using eqs. 27 to 2 9  and eqs. 12 to 14. 

w 

In order to obtain the natural bouildary conditions integration by parts 

is performed on the boundary iategral in eq. 26 and the result i s  added to the 

portion of the boundary integrals in eqr 3.0 taken aver i'ne iiai>ie diiiixiiii E. 

Then tho coefficients of 6 F  and JF, n 
conditions. Obtain 

~ 

put to zero f o ~ n i  the natural boundary 
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where and e a+e relzted to €=, E and E through transforma- 

tion formulas similar to eqs. 31 to 33. 

. 
M' nts ss XY w 

For eqs. 36 and 37 to form effectively a system of 2 boundary condi- 

tions (Z, 

slrzfaee in the direction tmgent Bo the boundary curve must not be zero. This 

is always the case for a swface of positive gaussian curvature. However, i f  

the surface has a negative gaussian curvature and part of the boundary curve 

coincides with an asymptotic line eq, 36 does not containhand becomes a 

boundary condition for F, 

diffeyential equation for F is of the hyperbolic type. 

+- y, sZ, n) mus t  be nc3n zero, that is, the normal curvature s f  the 
SS 

The problem then is not properly formulated as  the 

If there i s  a force hundary condition taking for example the form of 

an assigned value of the s t ~ e s s  function on a part (S 1 of the boundary, the 

va-istion dF must vanish OR ( S )  bat JF, 

bocndary condition is then obtained on ( S ) ,  namely eq. 36 which is a boundary 

co:dition for 

one dispIacernent boundary condition u F  = 0. Eq. 36 yields then 

remains arbitrary. Only one ilatural 
n 

A case of interest5' * is the boundary condition 3' = 0 with 

8 

E, >. = - 
&rr +?,s ?A 

on the past (SI of the boundary. 

It wi l l  be shown suhequently that is identical with the component 

of displacement along the Z axis. 

*plication 

Considez a shallow paraboloid of revolution with a rectangular projec- 

ted boundary, such as shoxm in Fig .  3, and subjected to a uniform vertical 

In3d p. 

8.  V. V.. Novozhilov, "Thiri Shell Theory", 2nd Edition, P. Noordhoff Ltd. , 
Groningen, 1964, p. 182, 
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Figure 3 

The cdges at x = - t 
their o w n  plane but infiniteiy flexible perpendicularly to their plane. 

are joined to Seams assumed Eo be infinitely stiff in 

Such 

bsundzry conditions require 

ut = 0 
S > N = o  

xx 

The condition M 

F = c=nstan% a t x = t  

= 0 m a y  be reduced to 
xx 

- 

a t x = +  - P 

(39) 

The edges at y = t are assumed to be fixed. The corresponding membrane - 
boundary conditions are 

The equation of the middle surface may be taken in the form 
2 x2 4- y z =  22 
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. wkteace the equation €or the st ress  function 

F, + F,= = - ap w 
A particular solution of eq. (42) that satisfies the bounc?.ary condition 

2 (30)  may be taken in the form 
v a F =-spy 

F (43) 

to which correspond the stress resultants 

N = F, = o  
xx YY 

N =F, = - a p  YY xx 

N = - F ,  = o  
“Y XY 

The general solution F of the homogeneous equation is a harmonic function 

which in our case must identically satisfy the cond.ition F = constant at  

x = 3. Q . The constant value of F at x = 5 
be taken as zero. A suitable form for F is 

k 

may without loss of generality h - 
h 

(44) 

n = O  

Due to symmetry about the (y, e )  plane only cosine terms are considered. 

These vanish for all values of n at x = + I .  
di€€erential equation and requiring it to be satisfied for the general term 

in the expression of r” 

Substituting for F into the h - 

yields the equation h 

145) 

The general solution of which after enforcing symmetry m-ay be written in 

the form 
f2n + 1 )  r y  

#I 

21! 
G =C cosh 
n n  

where C is an arbitrary constant of integration. F takes the form 
n 
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. .  
With the assumption of shallowness i, e. 

2 
2 x  

2, -- << 1 
a 

x - 2 

2 
2, -- < < I  

Y - a2 
and noting that 

Eqs. 27 to 29 reduce to 

and the variational equation reduces to 

where dF', JF, are the derivatives of w' XY 

< -  a m  U C i  is an arbiirary varizttsn ~f C n n' 
The evaluation of the terms and the integrations in the variational 

equation are straight forward. Pn addition, the orthogonality of the cosine 

and sine functions in the domain of integration allows the determination of 

the integration constants one by one. The result i s  

nS 1 8ap ! 
(2ni-f) f l  cosh 3 3  (2nti) IT( ' c = ( - 1 )  n 

2 t  

(53) 

whence 



- 1 5 -  

m 

0 = 0  

Tu' = F, = - ap - N YY XX x x  

M 

2E 

The convergence or" the series is satisfactory near the ;.pex of the 

parzbolcid but deteriorates when approaching $he edges, A t  '.he corners tire 

series for N 

not yepresent the state of stress in these regions. 

OCCCFB when all fwir edges a r e  supported similarly to tK.5 edges at x = T 4 .  

diverges which indZcates that the membrane colution doe8 
XY 

The seme phenornemn 

c 

9 The numerical results for this last  case give €or N zud N twice t're 
xx XY 

values in eqs. 54 and 55, respectively. 

It is interesting to note that if the particular solution is taken in the 

i i D  2 2 F =--(x t y )  P 4 
yielding 

N = o  
XY 

the -3aziational equation can*iaiizs only the hor.Dgeneous solution and i:i satis- 

fie6 by letting F 

shallsw paraboloid fixed all around a boundary of arbitrary shape. 

2 ap'-=z + y ) so?vca the= the problem of the 
&' =-T" = 0. 

h P 

- Stres a-Strain Displacement Relations - 
A derivation of stress-displacement relation5 using the principle of 

stathnary cornplernentary czergy with the technique of L a g ~ z n g e  mir'rtiplier8 

may be found in reference 3. The same results are stated in rafercnce 5 
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anC &re sbtained apsreatly through a diPPerent approach. 

strzin relations are established Ey considering the strains a6 paytial deri- 

vatives of the compleaentary strain energy d e ~ s i t y  function ar,d the strain- 

disglacement relations ilre obtaiaed through the pTincipla of virtual WOPIX. 

These methods are horn? fn 3 dimensional elasticity aad in the usuzl formu- 

lation on' shell theory in ~rthogonal curvilinear coordinates. 

Cartesian €ormulation of the Prtezibaane theory they yield the same results 

faun2 elsewhere. 

Were the streere- 

Applied in the 

By amlogy to other fozmclations the components of strain in the car- 

testan formulation of the rrernbrene theory may 3e defined without geometric 

conrsidsratioas by expressi.;?g the increment of complernentzry strain energy 

decsity due to arbitrazy increineats dN , dN C7tN and dN = dN of 
xx w7 XY YX XY 

the projected stress zesilltsnts in the f o ~ m  

where E , E , and f spe the coixpoilents of strain. This amounts to 

defhing the strains throagh eqs. 27 to 29. The strain-displacement rela- 

tions expressing the strafl-is in te-ms of the cartrsian cornpuncats of dis- 

p'ia.=elment u , u msy aovi be found by requiring the validity of the 

prir.tcip3.e of virtual work ~.r,%ich ~ a y  be written in ?he form 

= XY IT 

and u X Y  e 

In eq. 58 the area integrals represent internal and external virtual work 

reepectively. and the h e  integral represents the virtual work of the baun- 

d a q  streas resultants. 

58 must hold identically for any system of stress resultants and surface loads 

in eq~ili?.niams Using the equilibrium- eqmtiorms 5 to 8 to substitute for p , 

and p , then applying Greei's theorem 2nd equating to zero the coefficients 

This may 5erve actually to define u' and u* e Eq. n S 

x py* 

s 
of FT N and N iii the resulting a r e  integral yields 

xx' xy' YY 
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= u  4- z. u 
xx x * x  x Z J X  ( 5 9 )  

E = u  + z ,  ti 
YY Y * Y  Y =*Y 

2 E  =!I + u  3-2, u f z, u 
xy x,y ysx x e,y y E S X  

h tihe boundary integral N N and N are expressed in terms of N 
xx yy XY nn' 

.- N and IN through the transformation formulas 9 to 1 1  inverted, and u 

and u 

projected boundary through the  elations 

S B  ns -* 
are expressed in terms ~f components nornial and tangential to the 

Y 

u = u  cos(Q+u sincp 
n x  Y 

This yields for uF and u' the defiizing relations n 3 

u' = u  4-2, u n n  n e  

It may be shown through eqs.  64 cnd 65, consistently with the interpretation 

of u: and u *  in eq. 58.  that these are the components of the displacement 

vector with regard to the normal am3 tangent to the projected bcundary 

whes the third axis is the normal to the shell. The strain qcantities € 

?a S 

x7Y' 

E and 2 E do not represent, though they are related to, what is norrnaTly 

They are, however, the quantities to be 
YY XY 

callad extensional and shea2 strains. 

related to the pzojected stress resultaQts. 

_I Integptation of the Lagrange Multiplier and of the Natural  Boundary Condition 

The Euleu differential equation of the variational equation dE' = 0 takes 

now the significance of a "compatibility equation" in terms of the stress result- 

ants. 

eqs,  59 0s 61 by eliminating II and u In fact, using eqs. 59 to 61 the following 

identity in the displacements may be obtained. 

Here by "compatibility equatioD1l is meant the equation obtained from 

X T" 



From eqs. 5 9  atrd 65 the equivalent condition ut  = 0 yields x, x 

It appears therefore thzf the Lag::ange multiplier 

diEpFacernent C O K ~ Q C C I I ~  u e 

may be identified with the 

53 

In deriving the nakz*sl. bonndazy coiiditisne; eqs. 36 and 37, no refer- 

eolce to the displacements G J ~ S  s x d e  and the qtlaritities E , € and 2 & nn 8s nl3 

w e x  defined directly irz t e x n s  01 the stress ~esnltants. 

these are established as c ~ z ~ p n e ~ t e  of s trab it is iuieresting to estzblish the 

for= the natural bouadary c ~ ~ d i t i o n s  take when %be strains are expressed in 

te rms of the displacement components. 

co~sequence si the o;.iginaP dispiacement bounderiy conditions 19 and 20 and 

~ h c d d  therefope be esprecss'ri4e Js te;*r;ls of il' azd u' only. In order to carry 

mif  this transforinaticn, t?.z teirsor c h r ~ c t e z  of the coi2Pnent.s of strain, 

wh:ch is inrlicatzd by the t.?zns-forniation formu' ins  eqs. 32 to 33 consktently 

with eqs. 27 to 29 znd cqs. 59 to 61, is used, fiefding 

Now, however, tkat 

The result should obviously be a 0 
R S 

E = u  c z ,  u nn n,n n z , n  

hn z e r ~ s  of at znd tl' a s  defined through eqs. 64 and 6 5 ,  eqs. 67 to 69 take 

the form 
iz S 



It is 3een that the quantities on the left of eqs. 70 to 72 are exactly thos: 

occilrhing in the natural boundary conditions. 

the krrn 

Upon substitution these t 1.ce 

It 1s noted that eq5. 73 and 74 are indeed a ccnseqmnce of the boundzr.. 

con6iti~ne; in their original form, eqs. 19 and 20. 

th2t the quantities 

It is interesting 'o mte- 

E t  st 8 + %, l$ 

2 
4- 

L l f  - (pSS c; ~ ' = ~ h , s s  C Q ' S  n 

0 

occurring on the Left of eqs. 72 and 74 may be interpreted as an e:'ier,sional 

strain and a change of curv2hreS respectively, of the projected brmnc!ary 

curve undergoing the plane displacements u' and E'. 

Conclusion 

n Is 

- 
The principle of stationary complementary energy m a y  bc. w e d  to 

datzr~z~izz %e stress rc~iilta~lts in a membrane subjected to displacement, 

elastic, or mixed boundary conditions without necessarily deter nirting the 

displacements. 

Alternatively, the determination of the stress reslzltants may'be per- 

formed through the solution of 2 differential equations for the :)tress function 

and for the Cartesian component of disF1acement along the 2 ?.xis. The func- 

tional form of the complementary strain energy de-.sity and 1 he principle 

of virtual work m a y  be u s e d  to establish the stress-strzin-di splacexnent 

Pelatisno in Cartesian cocardinates. E t  seems that the Saime appmach provides 0 
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a csizsistent method of formulating in Cartesian coordinates the gerleral. 
~ 

equations of thin shell thees-y. a 
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Yo'Jtng(8 modulus 

Functional8 

Stress function 

thickness of shell 

Integrals of load co-mponents 

Operator 

Subscript associated mith the normal ts the projecte 

Stress resultants 

Lioundary 

Components of distributed load intensity 

Loading term 6epending on p , , p and the geometry of the 
membrane 

subscript associated with the arclength of the projected boundary 

Complementary strain energy density 

x py a 

Components oP ciisplaczmsnt 

Cartesian coordinates 

Subscripts 

Stpain quantities 

Angle between thz oriented normal to the projected boundary and 
the x axia 

Function of the stress resultants acting on the boundary 

Lagrange multiplier 

Poisson$s ratio 

Angle between sections of the middle surface by the planes ( x ,  e) 
and ty, z) 
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